Author Affiliations
Abstract
1 School of Physics and Optoelectronics; State Key Laboratory of Luminescent Materials and Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510640, China
2 Research Institute of Future Technology, South China Normal University, Guangzhou 510006, China
We report a high-stability ultrafast ultraviolet (UV) laser source at 352 nm by exploring an all-fiber, all-polarization-maintaining (all-PM), Yb-doped femtosecond fiber laser at 1060 nm. The output power, pulse width, and optical spectrum width of the fiber laser are 6 W, 244 fs, and 17.5 nm, respectively. The UV ultrashort pulses at a repetition rate of 28.9 MHz are generated by leveraging single-pass second-harmonic generation in a 1.3-mm-long BiB3O6 (BIBO) and sum frequency generation in a 5.1-mm-long BIBO. The maximum UV output power is 596 mW. The root mean square error of the output power of UV pulses is 0.54%. This laser, with promising stability, is expected to be a nice source for frontier applications in the UV wavelength window.
all-polarization-maintaining fiber ultrafast fiber laser UV laser 
Chinese Optics Letters
2024, 22(3): 031404
朱喆 1,2王麓屹 1陈学文 1,2林巍 1,2[ ... ]杨中民 1,2,4,5,6
作者单位
摘要
1 华南理工大学物理与光电学院,广东 广州 510640
2 华南理工大学发光材料与器件国家重点实验室,广东 广州 510640
3 浙江机电职业技术学院国际教育学院,浙江 杭州 310051
4 华南理工大学广东省特种光纤材料与器件工程技术研究开发中心,广东 广州 510640
5 华南理工大学广东省光纤激光材料及应用技术重点实验室,广东 广州 510640
6 华南师范大学未来技术研究院,广东 广州 510006
报道基于快速声光滤波技术的窄谱被动锁模掺镱光纤激光中心波长快速调谐研究。窄谱锁模光纤激光器系统的输出功率可达200 mW,脉冲宽度为5.87 ps,重复频率为40.874 MHz,光谱带宽为0.15 nm。通过编程声光可调谐滤波器的射频信号,可以获得中心波长在1016~1042 nm范围内可调谐的稳定锁模脉冲。为了掌握腔内滤波时激光脉冲的重建过程,利用色散傅里叶变换技术观测波长调谐时激光脉冲的实时重建过程,并确定激光器的最高中心波长调谐频率约为5 kHz。
激光器 光纤激光器 波长可调谐 色散傅里叶变换 脉冲重建 
光学学报
2024, 44(5): 0514001
张静 1,2温俊鹏 1,2朱喆 1,2韦小明 1,2,3,4,*杨中民 1,2,3,4,5
作者单位
摘要
1 华南理工大学物理与光电学院,广东 广州 510640
2 华南理工大学发光材料与器件国家重点实验室,广东 广州 510640
3 华南理工大学广东省特种光纤材料与器件工程技术研究开发中心,广东 广州 510640
4 华南理工大学广东省光纤激光材料及应用技术重点实验室,广东 广州 510640
5 华南师范大学未来技术研究院,广东 广州 510006
双光子激发显微镜是研究脑神经元活动的重要工具。基于传统机械式逐点激光扫描技术的双光子激发显微镜成像速度较慢,无法进行脑神经元活动的实时观察研究。此外,高速双光子激发显微成像需要配置高重复频率飞秒激光,以保证在较短的像素停留时间内获得较高的信息强度。本文提出了基于声光偏转的并行GHz超快激光扫描技术,通过设计射频编码方案,在920 nm波段搭建了高速GHz超快激光扫描系统。通过调整时间和空间重合,最终在15~31 MHz频率范围内获得了33个可分辨的并行GHz超快激光扫描光束,为实现高速双光子激发显微成像提供了技术支撑。
双光子显微成像 声光偏转 高速激光扫描 飞秒激光 
光学学报
2023, 43(23): 2318001
Zaiwei Cai 1†Zihao Li 1Yingtao Zhang 1Chiyi Wei 1[ ... ]Zhongmin Yang 1,2,3,4,5,*
Author Affiliations
Abstract
1 South China University of Technology, School of Physics and Optoelectronics, Guangzhou, China
2 South China University of Technology, State Key Laboratory of Luminescent Materials, Guangzhou, China
3 South China University of Technology, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangzhou, China
4 South China University of Technology, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangzhou, China
5 South China Normal University, Research Institute of Future Technology, Guangzhou, China
Laser processing with high-power ultrashort pulses, which promises high precision and efficiency, is an emerging new tool for material structuring. High repetition rate ultrafast laser highlighting with a higher degree of freedom in its burst mode is believed to be able to create micro/nanostructures with even more variety, which is promising for electrochemical applications. We employ a homemade high repetition rate ultrafast fiber laser for structuring metal nickel (Ni) and thus preparing electrocatalysts for hydrogen evolution reaction (HER) for the first time, we believe. Different processing parameters are designed to create three groups of samples with different micro/nanostructures. The various micro/nanostructures not only increase the surface area of the Ni electrode but also regulate local electric field and help discharge hydrogen bubbles, which offer more favorable conditions for HER. All groups of the laser-structured Ni exhibit enhanced electrocatalytic activity for HER in the alkaline solution. Electrochemical measurements demonstrate that the overpotential at 10 mA cm - 2 can be decreased as much as 182 mV compared with the overpotential of the untreated Ni (-457 mV versus RHE).
high repetition rate ultrafast laser burst mode operation nickel electrocatalyst hydrogen evolution reaction 
Advanced Photonics Nexus
2023, 2(5): 056009
Author Affiliations
Abstract
1 School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, China
2 Research Institute of Future Technology, South China Normal University, Guangzhou, China
In this work, we present a high-power, high-repetition-rate, all-fiber femtosecond laser system operating at 1.5 $\unicode{x3bc}$ m. This all-fiber laser system can deliver femtosecond pulses at a fundamental repetition rate of 10.6 GHz with an average output power of 106.4 W – the highest average power reported so far from an all-fiber femtosecond laser at 1.5 $\unicode{x3bc}$ m, to the best of our knowledge. By utilizing the soliton-effect-based pulse compression effect with optimized pre-chirping dispersion, the amplified pulses are compressed to 239 fs in an all-fiber configuration. Empowered by such a high-power ultrafast fiber laser system, we further explore the nonlinear interaction among transverse modes LP01, LP11 and LP21 that are expected to potentially exist in fiber laser systems using large-mode-area fibers. The intermodal modulational instability is theoretically investigated and subsequently identified in our experiments. Such a high-power all-fiber ultrafast laser without bulky free-space optics is anticipated to be a promising laser source for applications that specifically require compact and robust operation.
high-power femtosecond fiber laser high repetition rate intermodal modulational instability nonlinear pulse compression 
High Power Laser Science and Engineering
2023, 11(4): 04000e50
Author Affiliations
Abstract
1 South China University of Technology, School of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangzhou, China
2 South China University of Technology, School of Physics and Optoelectronics, Guangzhou, China
3 Zhejiang University, School of Materials Science and Engineering, Hangzhou, China
4 Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, China
Lead halide perovskite materials exhibit excellent scintillation performance, which, however, suffer from serious stability and toxicity problems. In contrast, the heavy metal-free anti-perovskite materials [ MX4 ] XA3 (A = alkali metal; M = transition metal; X = Cl, Br, I), a class of electron-inverted perovskite derivatives, exhibit robust structural and photophysical stability. Here, we design and prepare a lead-free [ MnBr4 ] BrCs3 anti-perovskite nanocrystal (NC)-embedded glass for efficient X-ray-excited luminescence with high-resolution X-ray imaging with a spatial resolution of 19.1 lp mm - 1. Due to the unique crystal structure and the protection of the glass matrix, the Cs3MnBr5 NC-embedded glass exhibits excellent X-ray irradiation stability, thermal stability, and water resistance. These merits enable the demonstration of real-time and durable X-ray radiography based on the developed glassy composite. This work could stimulate the research and development of novel metal halide anti-perovskite materials and open a new path for future development in the field of high-resolution and ultrastable X-ray imaging.
lead-free metal halides anti-perovskite nanocrystals glass ultrastable X-ray imaging 
Advanced Photonics
2023, 5(4): 046002
马云聪 1梁兆恒 1凌琳 1郭元锴 1[ ... ]杨中民 1,2,**
作者单位
摘要
1 华南理工大学物理与光电学院,广东 广州 510610
2 华南师范大学未来技术研究院,广东 广州 510006
多维(多模)激光是突破单模激光技术瓶颈的重要途径,有望推动多学科交叉与创新发展。不同于传统的单模激光,多维激光具有光场结构复杂、可调控参数多等特点,其性能调控面临诸多挑战。近年来,随着人工智能的兴起,机器学习等智能调控技术被广泛用于光学系统性能的优化,推动了智能光学及相关学科的快速发展,为多维激光的智能调控提供了新思路。从激光谐振腔内部和外部调控两方面,介绍了智能调控技术在激光调控领域中的研究进展,并展望了智能调控多维激光技术在光学微操控、激光微加工和空间光通信等领域中的应用前景。
激光光学 激光束整形 光场调控 机器学习 多维度 
中国激光
2023, 50(11): 1101004
作者单位
摘要
1 华南理工大学材料科学与工程学院, 华南理工大学物理与光电学院, 发光材料与器件国家重点实验室, 广东省光纤激光材料与应用技术重点实验室, 广东省特种光纤材料与器件工程技术研究开发中心, 广州 510000
2 华南理工大学材料科学与工程学院, 华南理工大学物理与光电学院, 发光材料与器件国家重点实验室, 广东省光纤激光材料与应用技术重点实验室, 广东省特种光纤材料与器件工程技术研究开发中心, 广州 510000)
现有应力发光多局限于单一波段。铋(Bi)离子能实现紫外-近红外波段的超宽发射, 但是现有 Bi离子激活应力发光材料多限于蓝光发射。针对这一问题, 本工作在多格点石榴石化合物 (Sr3Y2Ge3O12)中率先实现了紫外 -可见-近红外超宽带应力发光, 并借助近邻离子 (Sc3+)取代策略调控其应力发光性能。昀后, 利用热释光测试等得到材料缺陷分布信息, 并探究其应力发光机理。昀后, 基于多模式发光, 该材料有望用于信息储存领域。Performance Regulation
应力发光 铋离子 近邻离子取代 晶格工程 mechanoluminesence bismuth ion neighbor ion substitution lattice engineering 
硅酸盐学报
2022, 50(12): 3092
Author Affiliations
Abstract
1 University of Hong Kong, Department of Electrical and Electronic Engineering, Hong Kong, China
2 Chinese University of Hong Kong, Faculty of Medicine, Department of Psychiatry, Hong Kong, China
3 Chinese University of Hong Kong, Faculty of Medicine, Department of Medicine and Therapeutics, Hong Kong, China
4 Chinese University of Hong Kong, Prince of Wales Hospital, Li Ka Shing Institute of Health Sciences, Hong Kong, China
5 Fudan University, Shanghai Medical College, Institute for Translational Brain Research, Shanghai, China
6 University of Hong Kong, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Hong Kong, China
7 University of Hong Kong, State Key Laboratory of Brain and Cognitive Sciences, Hong Kong, China
8 South China University of Technology, School of Physics and Optoelectronics, Guangzhou, China
9 Advanced Biomedical Instrumentation Centre, Hong Kong, China
In two-photon microscopy, low illumination powers on samples and a high signal-to-noise ratio (SNR) of the excitation laser are highly desired for alleviating the problems of photobleaching and phototoxicity, as well as providing clean backgrounds for images. However, the high-repetition-rate Ti:sapphire laser and the low-SNR Raman-shift lasers fall short of meeting these demands, especially when used for deep penetrations. Here, we demonstrate a 937-nm laser frequency-doubled from an all-fiber mode-locked laser at 1.8 μm with a low repetition rate of ∼9 MHz and a high SNR of 74 dB. We showcase two-photon excitations with low illumination powers on multiple types of biological tissues, including fluorescence imaging of mouse brain neurons labeled with green and yellow fluorescence proteins (GFP and YFP), DiI-stained and GFP-labeled blood vessels, Alexa Fluor 488/568-stained mouse kidney, and second-harmonic-generation imaging of the mouse skull, leg, and tail. We achieve a penetration depth in mouse brain tissues up to 620 μm with an illumination power as low as ∼10 mW, and, even for the DiI dye with an extremely low excitation efficiency of 3.3%, the penetration depth is still up to 530 μm, indicating that the low-repetition-rate source works efficiently for a wide range of dyes with a fixed excitation wavelength. The low-repetition-rate and high-SNR excitation source holds great potential for biological investigations, such as in vivo deep-tissue imaging.
1.8 μm laser low repetition rate high signal-to-noise ratio mouse brain fluorescence and second-harmonic-generation imaging 
Advanced Photonics Nexus
2022, 1(2): 026001
作者单位
摘要
1 华南理工大学材料科学与工程学院发光材料与器件国家重点实验室,广东省激光光纤材料与 应用重点实验室,广东 广州 510640
2 华南理工大学物理与光电学院,广东 广州 510640
3 浙江大学光电科学与工程学院,浙江 杭州 310027
随着激光玻璃及光功能玻璃应用需求的快速增长,对光功能玻璃在光学性能和机械性能的要求越加趋向于多元化,而玻璃结构的不确定性和组分连续可调的特性阻碍了新型光功能玻璃材料的快速研发,为了摆脱传统的“试错型”设计模式,缩短玻璃材料开发的成本与周期,提升玻璃材料设计与制备过程的可预测性,“材料基因组计划”应运而生。“材料基因组计划”将高性能计算、数据和实验相结合,根据材料的组分对材料的特性进行定量地准确预测,从而指导新型材料的设计与开发。本文归纳并总结了目前应用于激光玻璃及光功能玻璃领域中的“材料基因工程”的不同理论与建模流程,分为基于物理定义推导的物理性方法、对实验数据进行统计分析的经验性方法、理论和经验相结合的理论-经验结合法。在此基础上,从激光玻璃和光功能玻璃材料出发,重点介绍“材料基因工程”在该领域的最新进展,并对未来的发展方向进行了展望。
材料 材料基因组计划 玻璃 理论计算 成分-结构-性质关系 
激光与光电子学进展
2022, 59(15): 1516002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!